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What is remap and where is it needed?

Remap is ubiquitous in computational modeling:
– ALE methods remap after rezoning
– Coupled multiphysics FE Navier-Stokes + FV transport
– Multiscale methods atomistic-to-continuum coupling
– Multilevel methods restriction and prolongation

Our focus: remap of div-free fields on unstructured grids
 Coupled physics: Remap = constrained interpolation

– Lagrange multipliers → global & implicit

 ALE methods: Remap = advection
– Transport algorithms → local & explicit

Remap between structured grids:
 relies upon grid structure and is not of interest to us

Remap = transfer of data between grids, subject to constraints
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Nomenclature
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Field representation: cochain complex

Definitions and notations:
Bochev and Hyman, Application of algebraic topology to compatible
spatial discretizations, Proceedings of the Five-Laboratory Conference
on Computational mathematics, Vienna, June 19-23, 2005.
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We encode divergence free fields as 2-cochains:
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Formal statement of the remap problem
Given
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“old” cell complex with cochains

“new” cell complex with cochains

Solenoidal cochain on old complex (2-cocycle)

Find
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Solenoidal cochain on the new complex
that approximates b

A good remapper
 Is accurate
 Preserves energy
 Has good feature retention
 Does not “ring” at jumps
 Is efficient (EXPLICIT)!

We focus on two-dimensions and quad cells:
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Lagrange Multipliers Solution

Carey et al. IJNME 50, 2001,  Girault, Scott, Calcolo 2003
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Constrained Optimization problem

Lagrangian functional
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Advantages
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 Arbitrary new and old grids

Viewpoint: Remap = constrained interpolation

Disadvantages
 Implicit and global: requires

inversion of a saddle-point matrix
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Transport Solution

Based on CT scheme of Evans,
Hawley, The Astrophysical Journal
332, 1988

Advection equation
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Viewpoint: Remap = constrained transport

Advantages
 Explicit and local

Disadvantages
 old and new grid must have the same topology
 discrete ∗ operation difficult for unstructured grids

⇒ ⇒

If the old field was
solenoidal,the new

field stays solenoidal
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P

Reconstruction to virtual edges
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Advection requires upwind interpolation at P:
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Reconstruction of B = averaging to P
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S ∈ {mono,harmonic, Van Leer, Donor}

A. Robinson, P. Bochev, P. Rambo.
http://infoserve.sandia.gov/sand_doc/2001/012146p.pdf

Extension to unstructured grids:
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CT Remap simply builds a Taylor expansion
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Reconstruction must
be exact for the 1st
derivatives to get 2nd
order accuracy.
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Constrained Interpolation Algorithm
Discrete Poincare Lemma
DE Rham’s theorem: the kth singular cohomology ≅ kth cohomology
⇒The cell complex and the domain have the same Betti numbers
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Principal idea:     exploit existence of discrete potentials in exact sequences
      ⇒ divergence-free constraint automatically satisfied

Key component:     an explicit potential recovery algorithm

RECOVERY

POSTPROCESSING

OPTIMIZATION

REMAP

“reconstruction”
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Computation of coboundary
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Explicit Potential Recovery
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Path Independence
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Recovery on Logically Rectangular Grids
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2. Initialize the root (gauge)

3. Traverse the branches

end
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Base potential recovery in 3D

6 flux DOF - 1 constraint = 5
12 edges   - 7SP edges  = 5
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On one cell: On a logically rectangular mesh

1. Choose a spanning tree and mark edges on co-spanning tree as free
2. Order faces with respect to the number of free edges
3. Recover AB on all faces with 1 free edge; update number of free edges
4. If no faces with free edges left then stop, else proceed to step 3
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Post-processing and Optimization

B. I-parameter control
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 AB    → base            Q1 (bilinear interpolant)
 AE    → extended     8 node serendipity

Post-processing

Optimization
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Requires conservative remap of magnetic energy
(see Shashkov and Margolin, LANL LAUR-2002)
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Numerical Results: Cyclic Remap

Wave Mesh

100 cycles

Random Mesh

Shashkov and Margolin, LANL LAUR-2002
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Potential Optimization: Wave Mesh
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17x17 Wave Mesh:
80 cycles
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Potential Optimization: Random Mesh
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B =" #A;

A = sin(2$x)sin(2$y)

17x17 Random Mesh:
80 cycles
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Potential Optimization:
Discontinuous Field

30x30 Wave Mesh: 
100 cycles

1-parameter control

Cell-by-cell control

Energy
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< 4%{
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CI Base vs. CT Donor:
Smooth Field

CI Base:

CT Donor:

Energy:

30x30 Random Mesh: 
100 cycles
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B =" #A; A = sin(2$x)sin(2$y)
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CI Extended vs. CT High Order:
Discontinuous Field

30x30 Random Mesh: 
100 cycles

CT Van Leer

CI Cell-by-Cell

Energy:
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Conclusions

 CI Remap algorithm applicable to arbitrary pairs of grids:

1. Old and new grid can have different topologies
(refinement)

2. New grid is not necessarily a small perturbation of the old one
(no CFL condition required for stability)

3. High accuracy retained for unstructured grids
4. Explicit
5. Local if new grid is small perturbation of the old grid

 Modular: can be extended to different discretizations (FE, FV, FD)

Future work:
 Dissipation control/magnetic energy conservation
 Post-processing of the potential
 3D algorithm
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Constrained Interpolation (CI) Remap

ΦD(new)

ΦU (new)

ΦR(new)ΦL(new)

recover interpolate remap


